IMIST


Vue normale Vue MARC vue ISBD

Computational materials science /

Autres auteurs : Leszczynski, Jerzy, -- 1949-
Collection : Theoretical and computational chemistry ; . 15 Mention d'édition :1st ed. Détails physiques : 1 online resource (xiii, 457 pages) : illustrations. ISBN :9780444513007; 0444513000; 9780080529639 (electronic bk.); 0080529631 (electronic bk.).
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
    Évaluation moyenne : 0.0 (0 votes)
Exemplaires : http://www.sciencedirect.com/science/book/9780444513007

Computational tools have been permanently deposited into the toolbox of theoretical chemists. The impact of new computational tools can hardly be overestimated, and their presence in research and applications is overwhelming. Theoretical methods such as quantum mechanics, molecular dynamics, and statistical mechanics have been successfully used to characterize chemical systems and to design new materials, drugs, and chemicals. This volume on Computational Material Sciences covers selected examples of notable applications of computational techniques to material science. The chapters contained in this volume include discussions of the phenomenon of chaos in chemistry, reaction network analysis, and mechanisms of formation of clusters. Details of more practical applications are also included in the form of reviews of computational design of new materials and the prediction of properties and structures of well known molecular assemblies. Current developments of effective computational methods, which will help in understanding, predicting, and optimizing periodic systems, nanostructures, clusters and model surfaces are also covered in this volume. 1. Reviews of current computational methods applied in material science 2. Reviews of practical applications of modelling of structures and properties of materials 3. Cluster and periodical approaches.

Chaos and Chemistry: Simple Models to Understand Chaos in Chemistry. -- Reaction Network Analysis. The Kinetics and Mechanism of Water-Gas-Shift Reaction on Cu(111). -- Clusters, the Intermediate State of Matter. -- Computer Simulation of Fullerenes and Fullerites. -- Theoretical Approaches to the Design of Functional Nanomaterials. -- Methods and Implementation of Robust, High-Precision Gaussian Basis DFT Calculations for Periodic Systems: The GTOFF Code. -- Many-Body Luminescence from Highly Excited -- Quantum-Confined Structures. -- Spin-Polarised Surfaces: Current State of Density Functional Theory Investigations. -- Simulating the Structure and Reactivity of Oxide Surfaces from First Principles. -- A Theory-Guided Design of Bimetallic Nanoparticle Catalysts for Fuel Cell Applications. -- Supported Metal Species and Adsorption Complexes on Metal Oxides and in Zeolites: Density Functional Cluster Model Studies.

Description based on print version record.

Includes bibliographical references and index.

Il n'y a pas de commentaire pour ce document.

pour proposer un commentaire.
© Tous droits résérvés IMIST/CNRST
Angle Av. Allal Al Fassi et Av. des FAR, Hay Ryad, BP 8027, 10102 Rabat, Maroc
Tél:(+212) 05 37.56.98.00
CNRST / IMIST

Propulsé par Koha