TY - BOOK AU - Park,Soojin AU - Seo,Min-Kang TI - Interface science and composites T2 - Interface science and technology, SN - 9780080963488 U1 - 541/.33 23 PY - 2011/// CY - Amsterdam PB - Academic Press KW - Interfaces (Physical sciences) KW - Composite materials KW - SCIENCE KW - Chemistry KW - Physical & Theoretical KW - bisacsh KW - fast N1 - Includes bibliographical references and index; Note continued: 2.2. Structure and Chemical Composition of Solid Surfaces -- 2.3. Adsorption Isotherms -- 2.3.1. IUPAC Classification of Adsorption Isotherms -- 2.3.2. Langmuir Isotherm -- 2.3.3. Brunauer-Emmett-Teller (BET) Isotherm -- 2.4. Measurement of Adsorption Isotherms -- 2.4.1. Gravimetric Measurement -- 2.4.2. Volumetric Measurement -- 2.4.2.1. Pressure Swing Adsorption (PSA) -- 2.4.2.2. Temperature Swing Adsorption (TSA) -- 2.4.3. Gas Chromatography Mesurement -- 2.5. Infinite and Finite Concentration -- 2.5.1. Solid-gas Interaction at Infinite Dilution -- 2.5.1.1. Adsorption Gibbs free energy -- 2.5.1.2. London Dispersive Component -- 2.5.1.3. Acid-Base Component -- 2.5.2. Solid-Gas Interaction at a Finite Concentration -- 2.5.2.1. Equilibrium Spreading Pressure and Surface Free Energy -- 2.5.2.2. Inverse Gas Chromatography at a Finite Concentration -- 2.6. Summary -- References -- 3. Solid-Liquid Interaction -- 3.1. Introduction -- 3.2. Surface Energetics; Note continued: 3.3. Contact Angle and Surface Tension -- 3.3.1. Sessile Drop as a Force Balance -- 3.3.2. Spreading Pressure -- 3.3.3. Hysteresis of Contact Angle Measurement -- 3.3.4. Surface Energy Measurements -- 3.3.4.1. One-liquid Tensiometric Method -- 3.3.4.2. Two-liquid Tensiometric Method -- 3.3.4.3. Three-liquid Tensiometric Method -- 3.3.5. Contact Angle Measurements -- 3.3.5.1. Tilting Plate Method -- 3.3.5.2. Wicking Method -- 3.3.5.3. Sessile Drop Method -- 3.3.5.4. Atomic Force Microscopy Method -- 3.3.6. Surface Tension Parameters of Liquids and Solids -- 3.3.6.1. Apolar Liquids -- 3.3.6.2. Polar Liquids -- 3.3.6.3. Synthetic Polymers -- 3.3.7. Solubility -- 3.3.7.1. Cohesive Energy -- 3.3.7.2. Solubility Parameter -- 3.3.7.3. Expanded Solubility Parameters -- 3.3.8. Surface Treatments -- 3.3.8.1. Wet Treatments -- 3.3.8.2. Dry Treatments -- 3.4. Associated Phenomena and Applications -- 3.4.1. Electrostatic Forces -- 3.4.1.1. Electric Double Layer; Note continued: 3.4.1.2. Charged Surface in Water -- 3.4.1.3. Charged Surfaces in Electrolyte -- 3.4.1.4. Applications -- 3.4.2. Self-Assembling Systems -- 3.4.2.1. Thermodynamic Equations of Self-assembly -- 3.4.2.2. Formation of Different Aggregates -- 3.4.2.3. Critical Micelle Concentration -- 3.4.2.4. Phase Separation Versus Micellization -- 3.4.2.5. Applications -- 3.5. Summary -- References -- 4. Solid-Solid Interfaces -- 4.1. Introduction -- 4.2. Adhesion at Solid-Solid Interfaces -- 4.2.1. Theories of Adhesion -- 4.2.2. Contribution of Thermodynamic Adsorption to Adhesion -- 4.2.3. Free Energies and Work of Adhesion -- 4.3. London Dispersion and Acid-Base Interaction -- 4.3.1. London Dispersion Force -- 4.3.1.1. Quantum mechanical theory of dispersion force -- 4.3.2. Acid-Base Interactions -- 4.3.2.1. Introduction -- 4.3.2.2. Hydrogen Bonding -- 4.3.2.3. Work of Adhesion -- 4.3.2.4. Drago's Approach -- 4.3.2.5. Gutmann's Numbers -- 4.3.2.6. Approaches of van Oss, Good, and Chaudhury; Note continued: 4.3.2.7. IR spectroscopic tools to access acid-base strength -- 4.3.2.8. Density of interacting sites -- 4.4. Mechanisms of Adhesion -- 4.4.1. Mechanical Interlocking -- 4.4.2. Electronic Theory -- 4.4.3. Theory of Weak Boundary Layers -- 4.4.4. Diffusion Theory -- 4.4.5. Intermolecular Bonding -- 4.4.6. Characterization of Adhesion -- 4.5. Adhesive Control -- 4.5.1. Non-deformable Solid Interfaces in Various Conditions -- 4.5.1.1. In vacuum -- 4.5.1.2. Forces due to capillary condensation -- 4.5.1.3. Non-deformable solids in condensable vapor -- 4.5.2. Deformable Solids -- 4.5.2.1. Hertz -- 4.5.2.2. Johnson, Kendall, and Roberts (JKR) -- 4.5.2.3. Derjaguin, Muller, and Toporov (DMT) -- 4.5.2.4. Maugis and Dugdale -- 4.5.2.5. Muller, Yushchenko, and Derjaguin (MYD)/Burgess, Hughes, and Whit (BHW) -- 4.5.2.6. Liquid bridge -- 4.6. Adhesive Behaviors at Interfaces -- 4.6.1. Introduction -- 4.6.2. Particular Composites -- 4.6.3. Effect of Interfaces; Note continued: 4.6.4. Crack Meeting and Interfaces -- 4.6.5. Crack Resistance of Composites -- 4.6.5.1. Fracture theory -- 4.6.5.2. Stress analysis of cracks -- 4.6.5.3. Stress intensity factor -- 4.6.5.4. Critical strain energy release rate -- 4.6.5.5.J-integral -- 4.6.5.6. Experimental data and applications -- 4.6.6. Delamination at Interfaces -- 4.6.7. Bending and Compression -- 4.6.8. Adhesion of Fibers in Composites -- 4.7. Summary -- References -- 5. Interfacial Applications in Nanomaterials -- 5.1. Introduction -- 5.2. Energy Storage and Conversion Devices -- 5.2.1. Dye-sensitized Solar Cells -- 5.2.2. Lithium-Ion Batteries -- 5.2.3. Supercapacitors -- 5.3. Environmental Technologies -- 5.3.1. NOx and SOx Removals -- 5.3.1.1. Pollution Problems -- 5.3.1.2. Emission Regulation -- 5.3.1.3. NOx and SOx Storage and Reduction -- 5.3.1.4. Carbonaceous Materials -- 5.3.2. Water Purification -- 5.4. Gas Storage -- 5.4.1. Introduction -- 5.4.2. Hydrogen -- 5.4.2.1. Metal Hydrides; Note continued: 5.4.2.2. Carbohydrates -- 5.4.2.3. Metal-organic Frameworks -- 5.4.2.4. Carbon Materials -- 5.4.2.5. Mechanism -- 5.4.3. Carbon Dioxide Adsorption -- 5.5. Bio Technologies -- 5.5.1. Delivery Systems for Food and Drug Products -- 5.5.1.1. Oil-in-water Emulsion -- 5.5.1.2. Solid-lipid Nanoparticles -- 5.5.1.3. Molecular Complexes -- 5.5.1.4. Self-assembly Delivery Systems -- 5.5.2. Cosmetics -- 5.5.2.1. Anti-aging -- 5.5.2.2. UV Protection -- 5.5.3. Adhesion for Biological Cells -- 5.6. Carbon Nanotubes-based Composite Materials -- 5.6.1. Role of Reinforcement -- 5.6.2. Electromagnetic Interference Shielding Properties -- 5.6.3. Optical Properties -- 5.7. The Versatile Properties of Graphene -- 5.8. Summary -- References -- 6. Element and Processing -- 6.1. Introduction -- 6.2. Reinforcements -- 6.2.1. Carbon Fibers -- 6.2.1.1. Introduction -- 6.2.1.2. Structures -- 6.2.1.3. Production processes -- 6.2.1.4. Surface treatment -- 6.2.1.5.Commercial products -- 6.2.2. Glass Fibers; Note continued: 6.2.3. Aramid Fibers -- 6.2.4. Ultra-high-molecular-weight Polyethylene -- 6.2.5. Ceramic Fibers -- 6.2.6. Boron Fibers -- 6.2.7. Metal Fibers -- 6.2.8. Particulates (Fillers) -- 6.2.9. Reinforcement Forms -- 6.2.9.1. Multi-end and single-end rovings -- 6.2.9.2. Mats -- 6.2.9.3. Woven, stitched, braided fabrics -- 6.2.9.4. Unidirectional -- 6.2.9.5. Prepreg -- 6.3. Matrices -- 6.3.1. Polymer Matrices -- 6.3.1.1. Thormosel resins -- 6.3.1.2. Thermoplastic resins -- 6.3.2. Metal Matrices -- 6.3.2.1. Aluminum (Al) -- 6.3.2.2. Magnesium (Mg) -- 6.3.2.3. Titanium (Ti) -- 6.3.3. Ceramic Matrices -- 6.3.3.1. Horosilicate glass -- 6.3.3.2. Silicon carbide (SiC) -- 6.3.3.3. Aluminum oxide (Al2O3) -- 6.4. Fabrication Process of Composites -- 6.4.1. Hand Lay-up Molding -- 6.4.1.1. Laminate materials -- 6.4.1.2. Surface preparation and bonding -- 6.4.1.3. Laminate construction -- 6.4.1.4. Multiply Construction -- 6.4.2. Spray-up Molding; Note continued: 6.4.3.Compression Molding, Transfer Molding and Resin Transfer Molding -- 6.4.4. Injection Molding -- 6.4.5. Reaction Injection Molding -- 6.4.6. Pultrusion -- 6.4.7. Filament Winding -- 6.5. Applications of Composites -- 6.5.1. Sports -- 6.5.2. Aircraft -- 6.5.3. Auto-mobile Parts -- 6.5.4. Infrastructures -- 6.6. Summary -- References -- 7. Types of Composites -- 7.1. Introduction -- 7.2. Polymer Matrix Composites -- 7.2.1. Introduction -- 7.2.2. High Performance Fiber Technology -- 7.2.2.1. High-performance carbon fibers -- 7.2.2.2. High-performance organic fibers -- 7.2.3. High Performance Matrix Resins -- 7.2.4. Fiber-Matrix Interface -- 7.2.4.1. Definition of fiber-matrix interface -- 7.2.4.2. Mechanical interfacial properties of composites -- 7.2.5. Development of Composite System -- 7.3. Carbon Matrix Composites -- 7.3.1. Introduction -- 7.3.2. Structure of Carbon/Carbon Composites -- 7.3.3. Oxidation Behavior and Coating Protection of Carbon/Carbon Composites; Note continued: 7.3.3.1. Oxidation kinetic and mechanism -- 7.3.3.2. Coating -- 7.3.3.3.Complex systems and multilayer coatings -- 7.3.3.4.Composite coatings -- 7.3.3.5. Protection with the use of an inert gas -- 7.3.3.6. Oxidation through coating cracks -- 7.3.4. Densification -- 7.3.4.1. Resin transfer molding of carbon/carbon performs -- 7.3.4.2. Stabilization -- 7.3.4.3. Chemical vapor infiltration of carbon/carbon preforms -- 7.3.4.4. Coal-tar and petroleum pitches -- 7.3.4.5. Thermoset resins -- 7.3.4.6. Densification efficiency -- 7.3.5. One-step Manufacturing of Carbon/Carbon Composites with High Density and Oxidative Resistance -- 7.3.6. Applications of Carbon/Carbon Composites -- 7.4. Metal Matrix Composites -- 7.4.1. Introduction -- 7.4.2.Combination of Materials for Light Metal Matrix Composites -- 7.4.2.1. Reinforcements -- 7.4.2.2. Matrix alloy systems -- 7.4.3. Production and Processing of Metal Matrix Composites -- 7.4.4. Mechanism of Reinforcement; Note continued: 7.4.5. Influence of Interface -- 7.4.5.1. Basics of wettability and infiltration -- 7.4.6. Properties of Metal Matrix Composites -- 7.4.7. Possible Applications of Metal Matrix Composites -- 7.4.7.1. Automobile products -- 7.4.7.2. Space system -- 7.4.8. Recycling -- 7.5. Ceramic Matrix Composites -- 7.5.1. Introduction -- 7.5.2. Reinforcements -- 7.5.3. Structure and Properties of Fibers -- 7.5.3.1. Fiber structure -- 7.5.3.2. Structure formation -- 7.5.3.3. Structure parameters and fiber properties -- 7.5.4. Inorganic Fibers -- 7.5.4.1. Production processes -- 7.5.4.2. Properties of commercial products -- 7.5.5. Properties and Applications of Ceramic Matrix Composites -- 7.6. Summary -- References -- 8.Composite Characterization -- 8.1. Introduction -- 8.2. Evaluation of Reinforcement Fibers -- 8.2.1. Introduction -- 8.2.2. Chemical Techniques -- 8.2.2.1. Elemental analysis -- 8.2.2.2. Titration -- 8.2.2.3. Fiber structure -- 8.2.2.4. Fiber surface chemistry; Note continued: 8.2.2.5. Sizing content and composition -- 8.2.2.6. Moisture content -- 8.2.2.7. Thermal stability and oxidative resistance -- 8.2.3. Physical Techniques -- 8.2.3.1. Filament diameter -- 8.2.3.2. Density of fibers -- 8.2.3.3. Electrical resistivity -- 8.2.3.4. Coefficient of thermal expansion -- 8.2.3.5. Thermal conductivity -- 8.2.3.6. Specific heat -- 8.2.3.7. Thermal transition temperatures -- 8.2.4. Mechanical Testing of Fibers -- 8.2.4.1. Tensile properties -- 8.3. Evaluation of Matrix Resins -- 8.3.1. Introduction -- 8.3.2. Preparation of Matrix Specimen -- 8.3.2.1. Thermoset polymers -- 8.3.2.2. Thermoplastic polymers -- 8.3.2.3. Specimen machining -- 8.3.3. Chemical Analysis Techniques -- 8.3.3.1. Elemental analysis -- 8.3.3.2. Functional group and wet chemical analysis -- 8.3.3.3. Spectroscopic analysis -- 8.3.3.4. Chromatographic analysis -- 8.3.3.5. Molecular weight and molecular weight distribution analysis -- 8.3.4. Thermal and Physical Analysis Techniques; Note continued: 8.3.4.1. Thermal analysis -- 8.3.4.2. Rheological analysis -- 8.3.4.3. Morphology -- 8.3.4.4. Volatiles content -- 8.3.4.5. Moisture content -- 8.4. Evaluation of Reinforcement-Matrix Interface -- 8.4.1. Introduction -- 8.4.2. Wettability -- 8.4.3. Interfacial Bonding -- 8.4.3.1. Mechanical bonding -- 8.4.3.2. Electrostatic bonding -- 8.4.3.3. Chemical bonding -- 8.4.3.4. Reaction or interdiffusion bonding -- 8.4.4. Methods for Measuring Bond Strength -- 8.4.4.1. Single fiber tests -- 8.4.4.2. Bulk specimen tests -- 8.4.4.3. Micro-indentation tests -- 8.5. Evaluation of Composites -- 8.5.1. Introduction -- 8.5.2. Factors Determining the Properties -- 8.5.3. Principal Coordinate Axes -- 8.5.4. Density -- 8.5.4.1. Dry bulk density -- 8.5.4.2. Density by water displacement (Archimedean density) -- 8.5.5. Determination of Fiber Content -- 8.5.6. Coefficient of Thermal Expansion -- 8.5.6.1. Dilatometer -- 8.5.7. Thermal Conductivity -- 8.5.7.1.Comparative method -- 8.5.8. Specific Heat; Note continued: 8.5.8.1. Differential scanning calorimetry -- 8.5.9. Electrical Resistivity -- 8.5.9.1. Four-point probe measurements -- 8.5.10. Thermal Cycling -- 8.5.11. Tensile Modulus -- 8.5.12. Tensile Strength -- 8.5.13. Shear Strength -- 8.5.13.1. Interlaminar shear strength -- 8.5.13.2. In-plane shear tests -- 8.5.14. Flexural Strength and Modulus -- 8.5.15. Uniaxial Compressive Strength and Modulus -- 8.5.16. Fatigue -- 8.5.17. Creep -- 8.5.18. Impact Behaviors -- 8.5.19. Fracture Toughness -- 8.6. Relationship between Surface and Mechanical Interfacial Properties in Composites -- 8.6.1. Surface Free Energy and Work of Adhesions -- 8.6.2. Surface Free Energy Analysis using a Linear Fit Method -- 8.6.3. Surface Free Energy and Fractural Properties -- 8.6.4. Mechanical Approach -- 8.6.5. Energetic Approach -- 8.6.6. Weibull Distribution -- 8.6.7. Experimental Results of Composites -- 8.6.7.1. Single fiber tensile strength -- 8.6.7.2. Weibull distribution parameter; Note continued: 8.6.7.3. Pull-out behaviors and apparent shear strength -- 8.7. Evaluation of Laminated Composites -- 8.7.1. Introduction -- 8.7.2. Analysis of Laminated Composites -- 8.7.3. Numerical Illustration -- 8.8. Nondestructive Testing of Composites -- 8.8.1. Introduction -- 8.8.2. Techniques for Evaluating of Properties and Defects of Composites -- 8.8.2.1. Typical defects of composites -- 8.8.2.2. Nondestructive evaluation -- 8.9. Summary -- References -- 9. Modeling of Fiber-Matrix Interface in Composite Materials -- 9.1. Introduction -- 9.2. Evaluation of Fiber-Matrix Interfacial Shear Strength and Fracture Toughness -- 9.2.1. Microscopical Geometric Analysis of Fiber Distributions in Unidirectional Composites -- 9.2.2. Measurement of Interfacial Shear Strength -- 9.2.3. Measurement of Interfacial Fracture Toughness -- 9.3. Interpretation of Single-Fiber Pull-out Test -- 9.3.1. Early Observations of Single-Fiber Pull-out Test; Note continued: 9.3.2. Calculation of Single-Fiber Pull-out Test -- 9.3.3. Incorporation of Crack Propagation in the Evaluation of Single-Fiber Pull-out Test -- 9.3.4. Change of Fiber Diameter with Tensile Load -- 9.3.5. Fracture Mechanics of Single-Fiber Pull-out Test -- 9.3.6. Relationship Between Debonding Stress and Embedded Length -- 9.3.7. Stress Transfer from Matrix to Fibers -- 9.4. Interpretation of Single-Fiber Push-out Test -- 9.5. Interpretation of Single-Fiber Fragmentation Test -- 9.6. Fiber-Matrix Adhesion from Single-Fiber Composite Test -- 9.7. Micromechanical Modeling of Microbond Test -- 9.8. Interphase Effect on Fiber-Reinforced Polymer Composites -- 9.8.1. Introduction -- 9.8.2. Three-Phase Bridging Model -- 9.8.3. Finite-Element Model -- 9.9. Summary -- References -- 10.Comprehension of Nanocomposites -- 10.1. Introduction -- 10.2. Types of Nanocomposites -- 10.2.1. Nanoparticle-Reinforced Composites -- 10.2.2. Nanoplatelet-Reinforced Composites; Note continued: 10.2.3. Nanofibers-Reinforced Composites -- 10.2.4. Carbon Nanotube-Reinforced Composites -- 10.2.4.1. Introduction -- 10.2.4.2. Properties of Carbon Nanotube-Polymer Composites -- 10.2.4.3. Interfaces of Carbon Nanotube-Polymer Composites -- 10.2.5. Graphene-Based Composite Materials -- 10.2.5.1. Introduction -- 10.2.5.2. Properties of Graphene -- 10.2.5.3. Surface Treatment of Graphene -- 10.2.5.4. Graphene-Polymer Nanocomposites -- 10.3. Processing of Nanocomposites -- 10.3.1. Introduction -- 10.3.2. Solution Processing of Carbon Nanotube and Polymer -- 10.3.3. Bulk Mixing -- 10.3.4. Melt Mixing -- 10.3.5. In Situ Polymerization -- 10.4. Characterization of Nanocomposites -- 10.5. Summary -- References UR - http://public.eblib.com/choice/publicfullrecord.aspx?p=858627 UR - http://site.ebrary.com/id/10480754 UR - http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=453766 UR - http://app.knovel.com/hotlink/toc/id:kpISC00005/interface-science-and UR - http://www.engineeringvillage.com/controller/servlet/OpenURL?genre=book&isbn=9780123750495 UR - http://www.sciencedirect.com/science/book/9780123750495 UR - http://www.sciencedirect.com/science/bookseries/15734285/18 ER -