IMIST


Votre recherche a retourné 6 résultats.

Fire retardancy of polymers : new applications of mineral fillers.   Publication : [S.l.] : Royal Society of Chemistry, 2005 . 410 p. ; , The use of polymers is restricted by their flammability- they may indeed initiate or propagate fire. Fire Retardancy of Polymers focuses on mineral additives from either micro- or nano-composites for application in fire retardants. With the use of fire retardant additives containing halogen or phosphorus compounds in decline, the need for other systems is evident. The major materials that are used as fire retardant fillers for polymers are alumina trihydrate or magnesium hydroxide, which account for more than 50% by weight of the world-wide sales of fire retardants. Recent works have shown that such halogen-free compounds may give enhanced fire retardancy to polymeric materials when used in low levels, alone, or in synergistic mixtures, and that the corresponding fire performances depend on the dispersion of the mineral filler, micrometer-scale dispersion leading to the best performances. Specialists discuss these new applications of mineral fillers with particular emphasis on action mechanisms, new materials including textiles, toxicology, and hazards. With extensive references, this book provides a comprehensive and up-to-date view of these applications and will appeal to professionals, materials scientists, and engineers looking for novel ways to eliminate fire hazards and improve flame retardancy of materials, with a special interest in sustainable development. 24 cm. Date : 2005 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),
Nanochemistry : a chemical approach to nanomaterials / par Ozin,, Geoffrey A. Publication : [S.l.] : Royal Society of Chemistry, 2005 . 594 p. ; , "... [A] gem in the scientific literature". Michael W. Pitcher, Science , 21 July 2006 International interest in nanoscience research has flourished in recent years, as it becomes an integral part in the development of future technologies. The diverse, interdisciplinary nature of nanoscience means effective communication between disciplines is pivotal in the successful utilization of the science. Nanochemistry : A Chemical Approach to Nanomaterials is the first textbook for teaching nanochemistry and adopts an interdisciplinary and comprehensive approach to the subject. It presents a basic chemical strategy for making nanomaterials and describes some of the principles of materials self-assembly over 'all' scales. It demonstrates how nanometre and micrometre scale building blocks (with a wide range of shapes, compositions and surface functionalities) can be coerced through chemistry to organize spontaneously into unprecedented structures, which can serve as tailored functional materials. Suggestions of new ways to tackle research problems and speculations on how to think about assembling the future of nanotechnology are given. Primarily designed for teaching, this book will appeal to graduate and advanced undergraduate students. It is well illustrated with graphical representations of the structure and form of nanomaterials and contains problem sets as well as other pedagogical features such as further reading, case studies and a comprehensive bibliography. Geoffrey Ozin and André Arsenault are both based at the University of Toronto in Canada. Ozin has been the recipient of numerous awards and has made a huge contribution to teaching over the years, while his research work is widely published and recognised throughout the world. Philip Ball, renowned science writer and 2005 winner of the Aventis Prize for Science, commented: "A text that covers all the basic concepts of nanoscale chemistry and materials science, and sets them in their historical context, has been long overdue. But here it is — not just a comprehensive guide to the field, but a recipe book for the future. Nanoengineers, start here!" 24 cm. Date : 2005 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Planewaves, pseudopotentials, and the lapw method / par Singh,, David J. Publication : [S.l.] : Springer, 2005 . 134 p. ; , With its extreme accuracy and reasonable computational efficiency, the linearized augmented plane wave (LAPW) method has emerged as the standard by which density functional calculations for transition metal and rare-earth containing materials are judged. The second edition of Planewaves, Pseudopotentials and the LAPW Method presents an updated,  thorough and self-contained exposition of the first principles methods for calculating properties of solids, in particular the "LAPW" method and will make connections between this method and planewave pseudopotential approaches. Theory is discussed, but the emphasis is on how practical implementation proceeds. In addition, the author suggests future directions for adapting the LAPW method to simulations of complex materials requiring large unit cells. He does this by elucidating the connections between the LAPW method and planewave pseudopotential approaches and by showing how Car-Parrinello type algorithms can be adapted to the LAPW method. The new edition contains  new sections on developments over the last 10 years, including for example the LDA+U method, non-collinear magnetism and the APW+LO method. 24 cm. Date : 2005 Disponibilité : Exemplaires disponibles: La bibliothèque des Sciences Exactes et Naturelles (1),

Vous ne trouvez pas ce que vous cherchez ?
© Tous droits résérvés IMIST/CNRST
Angle Av. Allal Al Fassi et Av. des FAR, Hay Ryad, BP 8027, 10102 Rabat, Maroc
Tél:(+212) 05 37.56.98.00
CNRST / IMIST

Propulsé par Koha