IMIST


Vue normale Vue MARC vue ISBD

Mechanics of transformation toughening and related topics /

par Karihaloo, B. L.
Autres auteurs : Andreasen, J. H.
Collection : North-Holland series in applied mathematics and mechanics ; . v. 40 Détails physiques : 1 online resource (xiv, 526 pages) : illustrations. ISBN :9780444819307; 0444819304; 9780080536040 (electronic bk.); 0080536042 (electronic bk.).
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
    Évaluation moyenne : 0.0 (0 votes)
Exemplaires : http://www.sciencedirect.com/science/book/9780444819307

Since the benefit of stress-induced tetragonal to monoclinic phase transformation of confined tetragonal zirconia particles was first recognized in 1975, the phenomenon has been widely studied and exploited in the development of a new class of materials known as transformation toughened ceramics (TTC). In all materials belonging to this class, the microstructure is so controlled that the tetragonal to monoclinic transformation is induced as a result of a high applied stress field rather than as a result of cooling the material below the martensitic start temperature. The significance of microstructure to the enhancement of thermomechanical properties of TTC is now well understood, as are the mechanisms that contribute beneficially to their fracture toughness. The micromechanics of these mechanisms have been extensively studied and are therefore presented here in a cogent manner. The authors also review dislocation formalism for the modelling of cracks and Eshelby's technique. In compiling this monograph the authors present the most up-to-date and complete review of the field and include several topics which have only recently been fully investigated.

Includes bibliographical references (p. 501-515) and indexes.

Cover -- Contents -- Part I: Introduction and Theory -- Chapter 1. Introduction -- Chapter 2. Transformation Toughening Materials -- 2.1 General -- 2.2 Modern Zirconia-Based Ceramics -- 2.3 Martensitic Transformation -- 2.4 Fabrication and Microstructure of PSZ -- 2.5 Microstructural Development -- 2.6 Fabrication and Microstructure of TZP -- Chapter 3. Constitutive Modelling -- 3.1 Introduction -- 3.2 Constitutive Model for Dilatant Transformation Behaviour -- 3.3 Constitutive Model for Shear and Dilatant Transformation Behaviour -- 3.4 Constitutive Model for ZTC -- Chapter 4. Elastic Solutions for Isolated Transformable Spots -- 4.1 Centres of Transformation -- 4.2 Transformation Spots -- 4.3 Homogeneous Dilatant Inclusions -- Chapter 5. Interaction between Cracks and Isolated Transformable Particles -- 5.1 Interaction of a Spot with a Crack -- 5.2 Stress Intensity Factors -- 5.3 Mode-I Spot Distributions -- Chapter 6. Modelling of Cracks by Dislocations -- 6.1 Dislocation Formalism -- 6.2 Representation of Cracks by Dislocations -- Part II: Transformation Toughening -- Chapter 7. Steady-State Toughening due to Dilatation -- 7.1 Introduction -- 7.2 Toughness Increment for a Semi-Infinite Stationary Crack -- 7.3 Toughening due to Steady-State Crack Growth -- Chapter 8. R-Curve Analysis -- 8.1 Semi-Infinite Cracks -- 8.2 Single Internal Cracks -- 8.3 Array of Internal Cracks -- 8.4 Surface Cracks -- 8.5 Array of Surface Cracks -- 8.6 Steady-State Analysis of an Array of Semi-Infinite Cracks -- 8.7 Solution Strategies for Interacting Cracks and Inclusions -- Chapter 9. Three-Dimensional Transformation Toughening -- 9.1 Introduction -- 9.2 Three-Dimensional Weight Functions -- 9.3 Dilatational Transformation Strains -- 9.4 Shear Transformation Strains -- Chapter 10. Transformation Zones from Discrete Particles -- 10.1 Introduction -- 10.2 Semi-Infinite Stationary Crack -- 10.3 Semi-Infinite Quasi-Statically Growing Crack -- 10.4 Self-propagating Transformation (Autocatalysis) -- Part III: Related Topics -- Chapter 11. Toughening in DZC -- 11.1 Introduction -- 11.2 Contribution of Phase Transformation to the Toughening of DZC -- 11.3 Contribution of Microcracking to the Toughening of DZC -- 11.4 Contribution of Small Moduli Differences to the Toughening of TTC -- 11.5 Effective Transformation Strain in Binary Composites -- Chapter 12. Toughening in DZC by Crack Trapping -- 12.1 Introduction -- 12.2 Small-Scale Crack Bridging -- 12.3 Crack Trapping by Second-Phase Dispersion -- 12.4 Crack Trapping by Transformable Second-Phase Dispersion -- Chapter 13. Toughening in DZC by Crack Deflection -- 13.1 Stress Intensity Factors at a Kinked Crack Tip -- 13.2 Interaction Between Crack Deflection and Phase Transformation Mechanisms -- 13.3 Crack Deflection in a Zone of Non-homogeneous Transformable Particles -- Chapter 14. Fatigue Crack Growth in Transformation Toughening Ceramics -- 14.1 Introduction -- 14.2 Fatigue Crack Growth From Sma.

Description based on print version record.

Use copy Restrictions unspecified star MiAaHDL

Electronic reproduction. [S.l.] : HathiTrust Digital Library, 2010. MiAaHDL

Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. MiAaHDL

http://purl.oclc.org/DLF/benchrepro0212

digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL

Il n'y a pas de commentaire pour ce document.

pour proposer un commentaire.
© Tous droits résérvés IMIST/CNRST
Angle Av. Allal Al Fassi et Av. des FAR, Hay Ryad, BP 8027, 10102 Rabat, Maroc
Tél:(+212) 05 37.56.98.00
CNRST / IMIST

Propulsé par Koha