IMIST


Exemplaires : http://dx.doi.org/10.1007/978-3-642-32460-4

Introduction -- Part I Traffic Data: Trajectroy and Floating-Car Data -- Cross-Sectional Data -- Representations of Cross-Sectional Data -- Spatiotemporal Reconstruction of the Traffic State -- Part II Traffic Flow Modeling: General Aspects -- Continuity Equation -- The Lighthill-Whitham-Richards Model -- Macroscopic Models with Dynamic Velocity -- Elementary Car-Following Models -- Car-Following Models based on Driving Strategies -- Modeling Human Aspects of Driving Behavior -- Cellular Automata -- Lane-Changing and other Discrete-Choice Situations -- Stability Analysis -- Calibration and Validation -- The Phase Diagram of Congested Traffic States -- Part III Applications of Traffic Flow Theory: Traffic Flow Breakdown and Traffic-State Recognition -- Travel Time Estimation -- Fuel Consumption and Emissions -- Model-Based Traffic-Flow Optimization -- Solutions to the Problems.

This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way.  Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.

Il n'y a pas de commentaire pour ce document.

pour proposer un commentaire.
© Tous droits résérvés IMIST/CNRST
Angle Av. Allal Al Fassi et Av. des FAR, Hay Ryad, BP 8027, 10102 Rabat, Maroc
Tél:(+212) 05 37.56.98.00
CNRST / IMIST

Propulsé par Koha