IMIST


Votre recherche a retourné 45 résultats.

Nanochemistry : a chemical approach to nanomaterials / par Ozin,, Geoffrey A. Publication : [S.l.] : Royal Society of Chemistry, 2005 . 594 p. ; , "... [A] gem in the scientific literature". Michael W. Pitcher, Science , 21 July 2006 International interest in nanoscience research has flourished in recent years, as it becomes an integral part in the development of future technologies. The diverse, interdisciplinary nature of nanoscience means effective communication between disciplines is pivotal in the successful utilization of the science. Nanochemistry : A Chemical Approach to Nanomaterials is the first textbook for teaching nanochemistry and adopts an interdisciplinary and comprehensive approach to the subject. It presents a basic chemical strategy for making nanomaterials and describes some of the principles of materials self-assembly over 'all' scales. It demonstrates how nanometre and micrometre scale building blocks (with a wide range of shapes, compositions and surface functionalities) can be coerced through chemistry to organize spontaneously into unprecedented structures, which can serve as tailored functional materials. Suggestions of new ways to tackle research problems and speculations on how to think about assembling the future of nanotechnology are given. Primarily designed for teaching, this book will appeal to graduate and advanced undergraduate students. It is well illustrated with graphical representations of the structure and form of nanomaterials and contains problem sets as well as other pedagogical features such as further reading, case studies and a comprehensive bibliography. Geoffrey Ozin and André Arsenault are both based at the University of Toronto in Canada. Ozin has been the recipient of numerous awards and has made a huge contribution to teaching over the years, while his research work is widely published and recognised throughout the world. Philip Ball, renowned science writer and 2005 winner of the Aventis Prize for Science, commented: "A text that covers all the basic concepts of nanoscale chemistry and materials science, and sets them in their historical context, has been long overdue. But here it is — not just a comprehensive guide to the field, but a recipe book for the future. Nanoengineers, start here!" 24 cm. Date : 2005 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Nanocoatings: size effect in nanostructured films par Aliofkhazraei, Mahmood. Publication : [S.l.] Springer 2011 . 264 p. , Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented. 24 cm. Date : 2011 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Nanomanufacturing handbook   Publication : [S.l.] CRC Press 2007 . 408 p. , Breakthroughs in nanotechnology have been coming at a rapid pace over the past few years. This was fueled by significant worldwide investments by governments and industry. But if these promising young technologies cannot begin to show commercial viability soon, that funding is in danger of disappearing as investors lose their appetites and the economic and scientific promise of nanotechnology may not be realized. Scrutinizing the barriers to commercial scale-up of nanotechnologies, the Nanomanufacturing Handbook presents a broad survey of the research being done to bring nanotechnology out of the laboratory and into the factory. Current research into nanotechnology focuses on the underlying science, but as this forward-looking handbook points out, the immediate need is for research into scale-up, process robustness, and system integration issues. Taking that message to heart, this book collects cutting-edge research from top experts who examine such topics as surface-programmed assembly, fabrication and applications of single-walled carbon nanotubes (SWNTs) including nanoelectronics, manufacturing nanoelectrical contacts, room-temperature nanoimprint and nanocontact technologies, nanocontacts and switch reliability, defects and surface preparation, and other innovative, application-driven initiatives. In addition to these technical issues, the author provides a survey of the current state of nanomanufacturing in the United States—the first of its kind—and coverage also reaches into patenting nanotechnologies as well as regulatory and societal issues. With timely, authoritative coverage accompanied by numerous illustrations, the Nanomanufacturing Handbook clarifies the current challenges facing industrial-scale nanotechnologies and outlines advanced tools and strategies that will help overcome them. 24 cm. Date : 2007 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),
Nanomaterials : mechanics and mechanisms / par Ramesh,, K.T. Publication : [S.l.] : Springer, 2009 . 353 p. ; , The enabling science in much of nanotechnology today is the science of nanomaterials; indeed in the broadest sense, nanotechnology would not be possible without nanomaterials. Nanomaterials: Mechanics and Mechanisms seeks to provide an entr� into the field for mechanical engineers, material scientists, chemical and biomedical engineers and physicists. The objective is to provide the reader with the connections needed to understand the intense activity in the area of the mechanics of nanomaterials, and to develop ways of thinking about these new materials that could be useful to both research and application. The book covers all of the fundamentals of the mechanical properties of materials in a highly readable style, and integrates most of the literature on the emerging field of nanomaterials into a coherent body of knowledge. This volume provides a basic understanding of mechanics and materials, and specifically nanomaterials and nanomechanics, in one self-contained text. Graduate and advanced undergraduate students will find well-organized chapters that provide the necessary background in mechanics, mechanical properties and modeling. The writing style illustrates concepts through quantitative modeling techniques, in contrast to theoretical abstractions of materials behavior.� Problem sets within each chapter aim to motivate discussion and further study in this rich and bourgeoning field. Providing engineers with the knowledge necessary to take full advantage of the tremendous potential of nanomaterials, Nanomaterials: Mechanics and Mechanisms is a valuable�teaching/learning tool for�mechanical engineering, physics and materials science au 24 cm. Date : 2009 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Nanomaterials for solid state hydrogen storage par Varin, Robert A. Publication : New York Springer 2009 . X-338 p. , Over the past decade, important advances have been made in the development of nanostructured materials for solid state hydrogen storage used to supply hydrogen to fuel cells in a clean, inexpensive, safe and efficient manner. Nanomaterials for Solid State Hydrogen Storage focuses on hydrogen storage materials having high volumetric and gravimetric hydrogen capacities, and thus having the highest potential of being applied in the automotive sector. Written by leading experts in the field, Nanomaterials for Solid State Hydrogen Storage provides a thorough history of hydrides and nanomaterials, followed by a discussion of existing fabrication methods. The authors’ own research results in the behavior of various hydrogen storage materials are also presented. Covering fundamentals, extensive research results and recent advances in nanomaterials for solid state hydrogen storage, this book serves as a comprehensive reference. 24 cm. Date : 2009 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Nanoparticle assemblies and superstructures   Publication : [S.l.] CRC Press 2005 . 648 p. , Cubes, triangular prisms, nano-acorn, nano-centipedes, nanoshells, nano-whiskers. . . .  Now that we can create nanoparticles in a wide variety of shapes and morphologies, comes the next challenge: finding ways to organize this collection of particles into larger and more complex systems.  Nanoparticle Assemblies and Superstructures , edited by pioneer of nanoparticle self-organization Nicholas A. Kotov, employs three critical questions to provide a framework of open-ended inquiry: What are the methods of organization of nanocolloids in more complex structures? What kind of structures do we need? What are the new properties appearing in nanocolloid superstructures? Pulling together a collection of contributors unmatched in both their expertise and enthusiasm, Kotov presents what he refers to as a snapshot of nanoassembly work in progress. The first section of this comprehensive volume provides background through an assessment of the current status of nanoparticle assembly development and the requirements for different applications of organized nanomaterials. The middle chapters explore the changes that occur in various properties of individual particles when they are brought together to form agglomerates and simple assemblies. In the final section, a number of top scientists describe various methods for organizing particles in complex nanostructured superstructures. These include techniques involving biological ligands and force fields, as well as methods based on self-organization. This remarkably prescient text upholds Kotov’s belief that the research on organization of nanoparticles and other nanostructures, will most certainly uncover a wealth of “interesting discoveries and surprising phenomena.” Nicholas A. Kotov has received several state, national, and international awards for his research on nanomaterials, including the Mendeleev Stipend, the Humboldt Fellowship, and the CAREER award. 24 cm. Date : 2005 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),
Self-assembly and nanotechnology systems : design, characterization, and applications / par Lee, Yoon S. Publication : Hoboken, N.J. : Wiley, 2012 . xx, 459 pages : , Machine generated contents note: Part I. Building Units. Chapter 1. Self-Assembly Systems. 1.1 Self-Assembly. 1.2 Identification of Building Units. 1.3 Implication of Building Unit Structures for Self-Assemblies. 1.4 General Assembly Diagram. 1.5 Collection of Building Units. 1.6 Concluding Remarks. References. Chapter 2. Nanotechnology Systems. 2.1 Nanoassembly. 2.2 Identification of Building Units. 2.3 Nanoelements. 2.4 Implication of Building Unit Structures for Nanoassemblies. 2.5 General Assembly Diagram. 2.6 Self-Assembly, Nanoassembly, and Nanofabrication. 2.7 Collection of Building Units. 2.8 Concluding Remarks. References. Part II. Design. Chapter 3. Identification of Self-Assembly Capability. 3.1 Assembly Issue. 3.2 General Overview. 3.3 Assembly Principles. 3.4 Collection of Primary Self-Assembled Aggregates. 3.5 Summary. References. Chapter 4. Identification of Multi-Step Self-Assemblies. 4.1 Assembly Issues. 4.2 General Overview. 4.3 Assembly Principles. 4.4 Collection of Higher-Order Self-Assembled Aggregates. 4.5 Collection of Self-Assembled Aggregates within Biological Systems. 4.6 Summary. References. Chapter 5. Control of the Structures of Self-Assembled Aggregates. 5.1 Assembly Issue. 5.2 General Overview. 5.3 Assembly Principles. 5.4 Collection of the Structures of Self-Assembled Aggregates. 5.5 Summary. References. Chapter 6. Hierarchy and Chirality of Self-Assembled Aggregates. 6.1 Assembly Issue. 6.2 General Overview. 6.3 Assembly Principles. 6.4 Collection of Hierarchy within Self-Assembled Systems. 6.5 Collection of Chirality expressed by Self-Assembled Systems. 6.6 Summary. References. Chapter 7. Assembly with Multiple Building Units. 7.1 Assembly Issue. 7.2 General Overview. 7.3 Assembly Principles. 7.4 Collection of Nanoassembled Systems I.7.5 Collection of Nanoporous Solids. 7.6 Summary. References. Chapter 8. Directed and Forced Assemblies. 8.1 Assembly Issue. 8.2 General Overview. 8.3 Assembly Principles. 8.4 Techniques for Directed and Forced Assemblies. 8.5 Surface-Induced Directed and Forced Assemblies. 8.6 Collection of Nanoassembled Systems II. 8.7 Summary. References. Part III. Applications. 9. External Signal-Responsive Nanomaterials. 9.1 Nanoissue. 9.2 General Overview. 9.3 Assembly Principles. 9.4 Collection of External Signal-Responsive Assembly Systems. 9.5 From Assembly Systems to Nanomaterials. 9.6 Collection of External Signal-Responsive Nanomaterials. 9.7 Summary. References. Chapter 10. Nanomaterials with Intrinsic Functionalities. 10.1 Nanoissue. 10.2 General Overview. 10.3 Assembly Principles. 10.4 From Assembled Systems to Nanomaterials. 10.5 Collection of the Nanomaterials with Intrinsic Functionalities. 10.6 Summary. References. Chapter 11. Nanostructures: Designed to Perform. 11.1 Nanoissue. 11.2 General Overview. 11.3 Assembly Principles. 11.4 Collection of Common Nanostructure Names. 11.5 Collection of Nanostructures and Their Applications. 11.6 Summary. References. Chapter 12. Nanoproperties: Controlled to Express. 12.1 Nanoissue. 12.2 General Overview. 12.3 Assembly Principles. 12.4 Collection of Nanoproperties and Their Applications. 12.5 Summary. References. Chapter 13. Nanofabricated Systems: Combined to Function. 13.1 Nanoissue. 13.2 General Overview. 13.3 Fabrication Principles. 13.4 Collection of Top-Down Techniques. 13.5 Collection of Top-Down Bulk Materials and Functionalizing Agents. 13.6 Collection of Nanofabricated Systems and Their Applications. 13.7 Summary. References. Chapter 14. Nanomechanical Movements: Combined to Operate. 14.1 Nanoissue. 14.2 General Overview. 14.3 Fabrication Principles. 14.4 Collection of Nanomechanical Movements. 14.5 Summary. References. Part IV. Characterization. 15. Assembly Forces and Measurements. 15.1 Intermolecular and Colloidal Forces. 15.2 Collection of Intermolecular and Colloidal Forces. 15.3 Measurements of Intermolecular and Colloidal Forces. 15.4 Collection of Measurement Techniques. 15.5 Implication of Building Unit Structures for Characterization. References. Chapter 16. Assembly Processes and Critical Behaviors. 16.1 Critical Behavior as the Characterization Guide of Assembly Processes. 16.2 Characterization Principles. 16.3 Collection of Physical Properties to Measure. 16.4 Collection of Critical Assembly Parameters. References. Chapter 17. Assembled Systems and Structural Properties. 17.1 Structural Properties for the Characterization of Assembled Systems. 17.2 Characterization Principles. 17.3 Collection of Structural Properties to Measure. References. Chapter 18. Modeling and Simulations. 18.1 Assembly Systems are Big and Multi-Scales. 18.2 Classic Models. 18.3 Simulations. 18.4 Concluding Remarks. References. 25 cm Date : 2012 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Pas de titre par Guimaraes,, Alberto Passos. Publication : [S.l.] Springer 2009 . 224 p. , The book deals with the novel field of Nanomagnetism, the study of magnetic samples that have at least one dimension in the nanoscopic range. Nanomagnetism has helped to shape the modern world through the contribution of this discipline to the rapid evolution of high- density magnetic recording. This process has made the hard-disk-equipped personal computer a part of our lives. The approach of this succinct book is to emphasize general principles and mechanisms that are relevant for the understanding of the intriguing properties of nanomagnetic objects, including thin films, nanoparticles, nanowires, nanodisks and nanorings. 25 cm. Date : 2009 Disponibilité : Exemplaires disponibles: La bibliothèque des Sciences Exactes et Naturelles (1),

Applied nanotechnology the conversion of research results to products par Ramsden, Jeremy J., Publication : Oxford William Andrew 2014 . 1 vol. (XVI-217 p.) 25 cm. Date : 2014 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Polymer-layered silicate and silica nanocomposites / par Ke, Y. C. Publication : . 1 online resource (ix, 394 pages) : Disponibilité :  http://www.sciencedirect.com/science/book/9780444515704,

Vous ne trouvez pas ce que vous cherchez ?
© Tous droits résérvés IMIST/CNRST
Angle Av. Allal Al Fassi et Av. des FAR, Hay Ryad, BP 8027, 10102 Rabat, Maroc
Tél:(+212) 05 37.56.98.00
CNRST / IMIST

Propulsé par Koha