IMIST


Affiner votre recherche

Votre recherche a retourné 424 résultats.

Physical properties and applications of polymer nanocomposites par Tjong, Sie Chin Publication : [S.l.] Woodhead Publishing 2010 . 912 p. , Polymer nanocomposites are polymer matrices reinforced with nano-scale fillers. This new class of composite materials has shown improved mechanical and physical properties. The latter include enhanced optical, electrical and dielectric properties. This important book begins by examining the characteristics of the main types of polymer nanocomposites, then reviews their diverse applications. Part one focuses on polymer/nanoparticle composites, their synthesis, optical properties and electrical conductivity. Part two describes the electrical, dielectric and thermal behavior of polymer/nanoplatelet composites, while polymer/nanotube composites are the subject of part three. The fourth and final part discusses the processing and industrial applications of these nanocomposite materials, such as uses in fuel cells, bioimaging and sensors. Chapters also go over the manufacture and applications of electrospun polymer nanocomposite fibers, nanostructured transition metal oxides, clay nanofiller/epoxy nanocomposites, hybrid epoxy-silica-rubber nanocomposites and other rubber-based nanocomposit 24 cm. Date : 2010 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Polymer nanocomposites : advances in filler surface modification techniques   Publication : [S.l.] Nova Science Pub Inc 2009 . 216 p. , Polymer nanocomposites revolutionised the research in this field owing to the tremendous improvement in the composite properties at very low filler volume fraction. The surface modification of the filler, generally layered silicate montmorillonite clay, is required to compatibilise the organic and inorganic phases. The inorganic clay was modified conventionally with alkyl ammonium ions and the exfoliated nanocomposites with polar polymers could be formed where the clay could be dispersed at nanometer scale. During the initial phase of nanocomposite developments, only ammonium ions of fixed chain length were exchanged on the clay surface. However, this technology suffered when polyolefins and other non-polar polymers were used owing to the difficulties in dispersion of polar clay in the hydrophobic matrices. At best, only partially exfoliated composites could be formed by using these ammonium modified clays. To circumvent these limitations, two possible routes have been followed. By polarising the polymer matrix (e.g. by addition of compatibilisers or surfactants), one can achieve compatibilisation between the organic-inorganic phases. However, this technology leads to deterioration of nanocomposite properties even though better delamination is achieved. On the other hand, one can also focus on the more efficient modification of the filler surface so that the residual polarity after modification of the surface with conventional ammonium ions is also eliminated. A number of new clay surface modification techniques have been developed in the recent years which help in the generation of more exfoliated polymer nanocomposites. These techniques do not rely on the ion exchange of fixed chain length ammonium ions, but lead to generation/exchange of long and polydisperse polymer chains. These techniques include grafting of polymers to the clay surface, grafting of polymers from the clay surface, controlled living polymerisation from the clay surface, in situ generation of polyolefins from the clay surface and clay surface reactions etc. and form very robust technologies for the complete organophilisation of the clay surface. The generation of thick brushes around the clay surface owing to the better surface modification leads to better coverage of the electrostatic forces binding the clay platelets together and also leads to higher basal plane spacing between them. As a result, the modified platelets are more susceptible to exfoliation when compounded with the polymer matrices. 26 cm. Date : 2009 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),
Self-assembly and nanotechnology systems : design, characterization, and applications / par Lee, Yoon S. Publication : Hoboken, N.J. : Wiley, 2012 . xx, 459 pages : , Machine generated contents note: Part I. Building Units. Chapter 1. Self-Assembly Systems. 1.1 Self-Assembly. 1.2 Identification of Building Units. 1.3 Implication of Building Unit Structures for Self-Assemblies. 1.4 General Assembly Diagram. 1.5 Collection of Building Units. 1.6 Concluding Remarks. References. Chapter 2. Nanotechnology Systems. 2.1 Nanoassembly. 2.2 Identification of Building Units. 2.3 Nanoelements. 2.4 Implication of Building Unit Structures for Nanoassemblies. 2.5 General Assembly Diagram. 2.6 Self-Assembly, Nanoassembly, and Nanofabrication. 2.7 Collection of Building Units. 2.8 Concluding Remarks. References. Part II. Design. Chapter 3. Identification of Self-Assembly Capability. 3.1 Assembly Issue. 3.2 General Overview. 3.3 Assembly Principles. 3.4 Collection of Primary Self-Assembled Aggregates. 3.5 Summary. References. Chapter 4. Identification of Multi-Step Self-Assemblies. 4.1 Assembly Issues. 4.2 General Overview. 4.3 Assembly Principles. 4.4 Collection of Higher-Order Self-Assembled Aggregates. 4.5 Collection of Self-Assembled Aggregates within Biological Systems. 4.6 Summary. References. Chapter 5. Control of the Structures of Self-Assembled Aggregates. 5.1 Assembly Issue. 5.2 General Overview. 5.3 Assembly Principles. 5.4 Collection of the Structures of Self-Assembled Aggregates. 5.5 Summary. References. Chapter 6. Hierarchy and Chirality of Self-Assembled Aggregates. 6.1 Assembly Issue. 6.2 General Overview. 6.3 Assembly Principles. 6.4 Collection of Hierarchy within Self-Assembled Systems. 6.5 Collection of Chirality expressed by Self-Assembled Systems. 6.6 Summary. References. Chapter 7. Assembly with Multiple Building Units. 7.1 Assembly Issue. 7.2 General Overview. 7.3 Assembly Principles. 7.4 Collection of Nanoassembled Systems I.7.5 Collection of Nanoporous Solids. 7.6 Summary. References. Chapter 8. Directed and Forced Assemblies. 8.1 Assembly Issue. 8.2 General Overview. 8.3 Assembly Principles. 8.4 Techniques for Directed and Forced Assemblies. 8.5 Surface-Induced Directed and Forced Assemblies. 8.6 Collection of Nanoassembled Systems II. 8.7 Summary. References. Part III. Applications. 9. External Signal-Responsive Nanomaterials. 9.1 Nanoissue. 9.2 General Overview. 9.3 Assembly Principles. 9.4 Collection of External Signal-Responsive Assembly Systems. 9.5 From Assembly Systems to Nanomaterials. 9.6 Collection of External Signal-Responsive Nanomaterials. 9.7 Summary. References. Chapter 10. Nanomaterials with Intrinsic Functionalities. 10.1 Nanoissue. 10.2 General Overview. 10.3 Assembly Principles. 10.4 From Assembled Systems to Nanomaterials. 10.5 Collection of the Nanomaterials with Intrinsic Functionalities. 10.6 Summary. References. Chapter 11. Nanostructures: Designed to Perform. 11.1 Nanoissue. 11.2 General Overview. 11.3 Assembly Principles. 11.4 Collection of Common Nanostructure Names. 11.5 Collection of Nanostructures and Their Applications. 11.6 Summary. References. Chapter 12. Nanoproperties: Controlled to Express. 12.1 Nanoissue. 12.2 General Overview. 12.3 Assembly Principles. 12.4 Collection of Nanoproperties and Their Applications. 12.5 Summary. References. Chapter 13. Nanofabricated Systems: Combined to Function. 13.1 Nanoissue. 13.2 General Overview. 13.3 Fabrication Principles. 13.4 Collection of Top-Down Techniques. 13.5 Collection of Top-Down Bulk Materials and Functionalizing Agents. 13.6 Collection of Nanofabricated Systems and Their Applications. 13.7 Summary. References. Chapter 14. Nanomechanical Movements: Combined to Operate. 14.1 Nanoissue. 14.2 General Overview. 14.3 Fabrication Principles. 14.4 Collection of Nanomechanical Movements. 14.5 Summary. References. Part IV. Characterization. 15. Assembly Forces and Measurements. 15.1 Intermolecular and Colloidal Forces. 15.2 Collection of Intermolecular and Colloidal Forces. 15.3 Measurements of Intermolecular and Colloidal Forces. 15.4 Collection of Measurement Techniques. 15.5 Implication of Building Unit Structures for Characterization. References. Chapter 16. Assembly Processes and Critical Behaviors. 16.1 Critical Behavior as the Characterization Guide of Assembly Processes. 16.2 Characterization Principles. 16.3 Collection of Physical Properties to Measure. 16.4 Collection of Critical Assembly Parameters. References. Chapter 17. Assembled Systems and Structural Properties. 17.1 Structural Properties for the Characterization of Assembled Systems. 17.2 Characterization Principles. 17.3 Collection of Structural Properties to Measure. References. Chapter 18. Modeling and Simulations. 18.1 Assembly Systems are Big and Multi-Scales. 18.2 Classic Models. 18.3 Simulations. 18.4 Concluding Remarks. References. 25 cm Date : 2012 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Single molecule chemistry and physics : an introduction / par Wang,, Chen. Publication : [S.l.] : Springer, 2006 . 303 p. ; , The characterization of individual molecules has been a scientifically attractive and challenging task for decades, and remains so today. New technological developments have facilitated great progress in our understanding of the structure and behavior of single atoms and molecules in various environments. This book provides an introduction to the most important experimental and theoretical methods for characterizing and imaging single molecules, including scanning tunnelling and atomic force microscopy of molecules at surfaces, fluorescence studies, near-field optical microscopy and Raman spectroscopy. It also elucidates newly discovered properties of single-molecular systems and their relevance to the fast growing field of nanotechnology. 24 cm. Date : 2006 Disponibilité : Exemplaires disponibles: La bibliothèque des Sciences Médicales et Pharmaceutiques (1),

The K P method : electronic properties of semiconductors par Voon,, Lok C. Lew Yan. Publication : [S.l.] Springer 2009 . 445 p. , This book presents a detailed exposition of the formalism and application of k.p theory for both bulk and nanostructured semiconductors. For bulk crystals, this is the first time all the major techniques for deriving the most popular Hamiltonians have been provided in one place. For nanostructures, this is the first time the Burt-Foreman theory has been made accessible. Thus, the reader will gain a clear understanding of the k.p method, will have an explicit listing of the various Hamiltonians in a consistent notation for their use, and a set of representative results. In addition, the reader can derive an excellent understanding of the electronic structure of semiconductors. 24 cm. Date : 2009 Disponibilité : Exemplaires disponibles: La bibliothèque des Sciences Exactes et Naturelles (1),

The physics of carbon nanotube devices / par Léonard, François, Publication : Norwich, NY : William Andrew, 2009 . 1 online resource (xii, 296 pages) : Date : 2009 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Vous ne trouvez pas ce que vous cherchez ?
© Tous droits résérvés IMIST/CNRST
Angle Av. Allal Al Fassi et Av. des FAR, Hay Ryad, BP 8027, 10102 Rabat, Maroc
Tél:(+212) 05 37.56.98.00
CNRST / IMIST

Propulsé par Koha