IMIST


Votre recherche a retourné 2 résultats.

Basic semiconductor physics par Hamaguchi, Chihiro. Publication : [S.l.] Springer 2010 . 585 p. , This book presents a detailed description of the basic semiconductor physics. The reader is assumed to have a basic command of mathematics and some elementary knowledge of solid state physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. The reader can understand three different methods of energy band calculations, empirical pseudo-potential, k.p perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for full band Monte Carlo simulation are discussed. Experiments and theoretical analysis of cyclotron resonance are discussed in detail because the results are essential to the understanding of semiconductor physics. Optical and transport properties, magneto-transport, two dimensional electron gas transport (HEMT and MOSFET), and quantum transport are reviewed, explaining optical transition, electron phonon interactions, electron mobility. Recent progress in quantum structures such as two-dimensional electron gas, superlattices, quantum Hall effect, electron confinement and the Landauer formula are included. The Quantum Hall effect is presented with different models. In the second edition, the addition energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. Also the physics of semiconductor Lasers is described in detail including Einstein coefficients, stimulated emission, spontaneous emission, laser gain, double heterostructures, blue Lasers, optical confinement, laser modes, strained quantum wells lasers which will give insight into the physics of various kinds of semiconductor lasers, in addition to the various processes of luminescence. 24 cm. Date : 2010 Disponibilité : Exemplaires disponibles: La bibliothèque des Sciences Exactes et Naturelles (1),

Transport equations for semiconductors par JUngel, Ansga Publication : [S.l.] Springer 2009 . 332 p. , Semiconductor devices are ubiquitous in the modern computer and telecommunications industry. A precise knowledge of the transport equations for electron flow in semiconductors when a voltage is applied is therefore of paramount importance for further technological breakthroughs. In the present work, the author tackles their derivation in a systematic and rigorous way, depending on certain key parameters such as the number of free electrons in the device, the mean free path of the carriers, the device dimensions and the ambient temperature. Accordingly a hierarchy of models is examined which is reflected in the structure of the book: first the microscopic and macroscopic semi-classical approaches followed by their quantum-mechanical counterparts. 25 cm. Date : 2009 Disponibilité : Exemplaires disponibles: La bibliothèque des Sciences Exactes et Naturelles (1),

Vous ne trouvez pas ce que vous cherchez ?
© Tous droits résérvés IMIST/CNRST
Angle Av. Allal Al Fassi et Av. des FAR, Hay Ryad, BP 8027, 10102 Rabat, Maroc
Tél:(+212) 05 37.56.98.00
CNRST / IMIST

Propulsé par Koha