IMIST


Vue normale Vue MARC vue ISBD

Analyse numérique de quelques problèmes de structures physiques dépendant d'un paramètre

par El Alami El Ferricha , Mohamed Publié par : Université Sidi Mohamed Ben Abdellah, Faculté des Sciences Dhar Mahraz (Fès) Année : 2001
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
    Évaluation moyenne : 0.0 (0 votes)
Type de document Site actuel Cote Statut Date de retour prévue Code à barres Réservations
Thèse universitaire La bibliothèque des Sciences Exactes et Naturelles
TH-518 ALA (Parcourir l'étagère) Disponible 0000000008243
Total des réservations: 0

Sous format papier

Université Sidi Mohamed Ben Abdellah

Les travaux réalisés concernant l’analyse numérique de quelques modèles de structures élastiques gouvernées par des problèmes d’équations aux dérivées partielles dépendant d’un paramètre : ici l’épaisseur ou la structure. Ces travaux sont classés en deux parties : La première partie est consacrée à l’analyse numérique de problèmes de perturbations singulières par des méthodes directes (non mixtes). Le premier problème est la vibration d’une plaque mince sous tension. Ce problème est un problème de perturbations singulières de l’opérateur du bilaplacien. La méthode d’approximation numérique utilisée est un couplage d’un développement asymptotique et d’une méthode d’éléments finis Galerkin classique. Le deuxième problème est un problème de perturbations singulières d’un opérateur du second ordre qui modélise un phénomène de réaction-convection-diffusion avec un faible coefficient de diffusion. Pour ce problème, dont l’accent est mis sur le cas monodimensionnel, on proposé une méthode d’approximation numérique de Galerkin enrichie par des fonctions bulles résiduelles. On examine ensuite l’impact de cas fonctions lorsque le problème comporte un point tournant. La deuxième partie est consacrée à l’analyse numérique de problèmes d’arche par des méthodes mixtes avec multiplicateurs de Lagrange. Dans le premier travail on étudie le déplacement d’une arche élastique encastrée aux extrémités et supportant un chargement sous le modèle Budiansky-Sanders en élasticité linéarisée. On note qu’une approximation numérique par la méthode classique donne de mauvais résultats lorsque l’épaisseur est petite devant le pas de discrétisation. On propose pour le calcul du déplacement de l’arche une méthode mixte augmentée donnant lieu à plus de choix pour les espaces éléments finis d’approximation et à une amélioration des résultats de la méthode classique. Dans le deuxième travail de cette partie, on considère le problème du déplacement de l’arche considéré dans le premier travail mais cette fois-ci on suppose que l’arche soit de faible épaisseur. On utilise pour l’analyse numérique de ce problème une méthode mixte conforme enrichie avec des fonctions bulles résiduelles. Le troisième travail dans cette partie est consacré à l’analyse numérique d’un problème de jonction d’arches par des charnières rigides. L’assemblage d’arches élastiques de même épaisseur donne une structure globale encastrée mais de forme moins régulière que les arches composantes. On approche d’abord la fonction de forme de la structure globale par une suite de formes régulières. On définit ensuite le déplacement de la structure globale comme limite des déplacements des arches composantes, ces déplacements sont approchés à l’aide de la méthode d’approximation déjà utilisée dans le premier travail de cette partie.

Il n'y a pas de commentaire pour ce document.

pour proposer un commentaire.
© Tous droits résérvés IMIST/CNRST
Angle Av. Allal Al Fassi et Av. des FAR, Hay Ryad, BP 8027, 10102 Rabat, Maroc
Tél:(+212) 05 37.56.98.00
CNRST / IMIST

Propulsé par Koha