IMIST


Votre recherche a retourné 22 résultats.

Adsorption and diffusion in nanoporous materials par Roque-Malherbe,, Rolando M.A. Publication : [S.l.] CRC Press 2007 . 288 p. , As nanomaterials get smaller, their properties increasingly diverge from their bulk material counterparts. Written from a materials science perspective, Adsorption and Diffusion in Nanoporous Materials describes the methodology for using single-component gas adsorption and diffusion measurements to characterize nanoporous solids. Concise, yet comprehensive, the book covers both equilibrium adsorption and adsorption kinetics in dynamic systems in a single source. It presents the theoretical and mathematical tools for analyzing microporosity, kinetics, thermodynamics, and transport processes of the adsorbent surface. Then it examines how these measurements elucidate structural and morphological characteristics of the materials. Detailed descriptions of the phenomena include diagrams, essential equations, and fully derived, concrete examples based on the author's own research experiences and insight. The book contains chapters on statistical physics, dynamic adsorption in plug flow bed reactors, and the synthesis and modification of important nanoporous materials. The final chapter covers the principles and applications of adsorption for multicomponent systems in the liquid phase. Connecting recent advances in adsorption characterization with developments in the transport and diffusion of nanoporous materials, this book is ideal for scientists involved in the research, development, and applications of new nanoporous materials. 24 cm. Date : 2007 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Carbon nanomaterials   Publication : [S.l.] CRC Press 2006 . 344 p. , First Self-Contained Source Entirely Dedicated to Nanocarbons Carbon nanotubes (CNTs) attract a good deal of attention for their electronic, mechanical, optical, and chemical characteristics. But nanostructured carbons are not limited to nanotubes and fullerenes—they also exist as nano-diamonds, fibers, cones, scrolls, whiskers, and graphite polyhedral crystals. While excellent papers and articles exist scattered across several journals, a comprehensive, single volume focused simply on carbon-based nanostructures was unavailable, until now. Featuring the contributions of exceptional leaders in the field, Carbon Nanomaterials brings together the most up-to-date research findings on the special properties, practical synthesis, and real applications for all types of carbon-related nanomaterials. The authors emphasize the importance of nanotexture and surface chemistry in various modification methods used to customize properties for a wide range of applications. They also draw attention to challenges that must be addressed before they are fully integrated into the next generation of science and engineering applications. The final chapter is dedicated to examining the timely application of carbon nanotubes as a composite material for solar cells and electrical hydrogen storage.   Carbon Nanomaterials provides a broad survey of numerous carbon-based nanomaterials in the context of commercially available nanomaterials as well as emerging technologies and future applications in the fields of molecular electronics, sensoring, nano- and micro electromechanic devices, field-emission displays, energy storage, and composite materials. 27 cm. Date : 2006 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),
Carbon nanotubes : properties and applications par O'Connell, Michael J. Publication : [S.l.] CRC Press 2006 . 360 p. , Since their discovery more than a decade ago, carbon nanotubes (CNTs) have held scientists and engineers in captive fascination, seated on the verge of enormous breakthroughs in areas such as medicine, electronics, and materials science, to name but a few. Taking a broad look at CNTs and the tools used to study them, Carbon Nanotubes: Properties and Applications comprises the efforts of leading nanotube researchers led by Michael O’Connell, protégé of the late father of nanotechnology, Richard Smalley. Each chapter is a self-contained treatise on various aspects of CNT synthesis, characterization, modification, and applications. The book opens with a general introduction to the basic characteristics and the history of CNTs, followed by discussions on synthesis methods and the growth of “peapod” structures. Coverage then moves to electronic properties and band structures of single-wall nanotubes (SWNTs), magnetic properties, Raman spectroscopy of electronic and chemical behavior, and electromechanical properties and applications in NEMS (nanoelectromechanical systems). Turning to applications, the final sections of the book explore mechanical properties of SWNTs spun into fibers, sidewall functionalization in composites, and using SWNTs as tips for scanning probe microscopes. Taking a fresh look at this burgeoning field, Carbon Nanotubes: Properties and Applications points the way toward making CNTs commercially viable. 24 cm. Date : 2006 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Carbon nanotubes preparation and properties par Ebbesen,, Thomas W. Publication : [S.l.] CRC Press 1996 . 304 p. , Nanomaterials are destined to become a discipline as distinct and important as polymers are in chemistry! With the realization that the structure of molecules such as C60 and C70 followed simple geometric principles, it became clear that a great variety of hollow, closed carbon structures, including nanotubes, could be made along the same principles. The modern nanotube can be thought of as the ultimate fiber formed of perfectly closed, seamless shells having unique features, such as mechanical and electronic properties that are very sensitive to its geometry and its dimensions. The nanotube has many uses: 25 cm. Date : 1996 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Introduction to nanoscience par Hornyak, Gabor L. Publication : Boca Raton CRC Press 2008 . 815 p. , Tomorrow’s nanoscientist will have a truly interdisciplinary and nano-centric education, rather than, for example, a degree in chemistry with a specialization in nanoscience. For this to happen, the field needs a truly focused and dedicated textbook. This full-color masterwork is such a textbook. It introduces the nanoscale along with the societal impacts of nanoscience, then presents an overview of characterization and fabrication methods. The authors systematically discuss the chemistry, physics, and biology aspects of nanoscience, providing a complete picture of the challenges, opportunities, and inspirations posed by each facet before giving a brief glimpse at nanoscience in action: nanotechnology. This book is written to provide a companion volume to Fundamentals of Nanotechnology. The two companion volumes are also available bound together in the single volume, Introduction to Nanoscience and Nanotechnology Qualifying instructors who purchase either of these volumes (or the combined set) are given online access to a wealth of instructional materials. These include detailed lecture notes, review summaries, slides, exercises, and more. The authors provide enough material for both one- and two-semester courses. 26 cm. Date : 2008 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Nanomanufacturing handbook   Publication : [S.l.] CRC Press 2007 . 408 p. , Breakthroughs in nanotechnology have been coming at a rapid pace over the past few years. This was fueled by significant worldwide investments by governments and industry. But if these promising young technologies cannot begin to show commercial viability soon, that funding is in danger of disappearing as investors lose their appetites and the economic and scientific promise of nanotechnology may not be realized. Scrutinizing the barriers to commercial scale-up of nanotechnologies, the Nanomanufacturing Handbook presents a broad survey of the research being done to bring nanotechnology out of the laboratory and into the factory. Current research into nanotechnology focuses on the underlying science, but as this forward-looking handbook points out, the immediate need is for research into scale-up, process robustness, and system integration issues. Taking that message to heart, this book collects cutting-edge research from top experts who examine such topics as surface-programmed assembly, fabrication and applications of single-walled carbon nanotubes (SWNTs) including nanoelectronics, manufacturing nanoelectrical contacts, room-temperature nanoimprint and nanocontact technologies, nanocontacts and switch reliability, defects and surface preparation, and other innovative, application-driven initiatives. In addition to these technical issues, the author provides a survey of the current state of nanomanufacturing in the United States—the first of its kind—and coverage also reaches into patenting nanotechnologies as well as regulatory and societal issues. With timely, authoritative coverage accompanied by numerous illustrations, the Nanomanufacturing Handbook clarifies the current challenges facing industrial-scale nanotechnologies and outlines advanced tools and strategies that will help overcome them. 24 cm. Date : 2007 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),
Nanoparticle assemblies and superstructures   Publication : [S.l.] CRC Press 2005 . 648 p. , Cubes, triangular prisms, nano-acorn, nano-centipedes, nanoshells, nano-whiskers. . . .  Now that we can create nanoparticles in a wide variety of shapes and morphologies, comes the next challenge: finding ways to organize this collection of particles into larger and more complex systems.  Nanoparticle Assemblies and Superstructures , edited by pioneer of nanoparticle self-organization Nicholas A. Kotov, employs three critical questions to provide a framework of open-ended inquiry: What are the methods of organization of nanocolloids in more complex structures? What kind of structures do we need? What are the new properties appearing in nanocolloid superstructures? Pulling together a collection of contributors unmatched in both their expertise and enthusiasm, Kotov presents what he refers to as a snapshot of nanoassembly work in progress. The first section of this comprehensive volume provides background through an assessment of the current status of nanoparticle assembly development and the requirements for different applications of organized nanomaterials. The middle chapters explore the changes that occur in various properties of individual particles when they are brought together to form agglomerates and simple assemblies. In the final section, a number of top scientists describe various methods for organizing particles in complex nanostructured superstructures. These include techniques involving biological ligands and force fields, as well as methods based on self-organization. This remarkably prescient text upholds Kotov’s belief that the research on organization of nanoparticles and other nanostructures, will most certainly uncover a wealth of “interesting discoveries and surprising phenomena.” Nicholas A. Kotov has received several state, national, and international awards for his research on nanomaterials, including the Mendeleev Stipend, the Humboldt Fellowship, and the CAREER award. 24 cm. Date : 2005 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),
Structure property correlations for nanoporous materials par Chatterjee, Abhijit. Publication : [S.l.] CRC Press 2010 . 354 p. , Nanoporous materials are critical to various fields of research, including ion exchange, separation, catalysis, sensor applications, biological molecular isolation, and purification. In addition, they offer new opportunities in such areas as inclusion chemistry, guest-host synthesis, and molecular manipulations and reactions at the nanoscale. In Structure Property Correlations for Nanoporous Materials , pioneering researcher Abhijit Chatterjee guides experimentalists in their design of nanoporous material using computer simulation methodologies. The book begins with a comprehensive overview of nanoporous materials. It describes their function, examines their fundamental properties, including catalytic effects and adsorption, demonstrates their importance, explores their applications based on theoretical and experimental studies, and highlights the challenges they pose as well as their future prospects. Explores simulation methodologies Next, the book moves on to molecular modeling, placing a heavy focus on Monte Carlo simulation. It examines density functional theory (DFT) and local reactivity descriptors. It also discusses the synthesis of nanoporous materials, the structural characterization of materials in terms of chemical composition, spectroscopic analysis, mechanical stability, and porosity; and the design of new nanoporous materials. Dr. Chatterjee explores projected applications and concludes with a discussion of the catalytic activity of nanoporous materials and reaction mechanisms. The text is supplemented with experiments and simulation instructions to clarify the theoretical analysis. Conveying the significance of the combination of traditional experimental work and molecular simulation, the book enables experimentalists to achieve better results with less effort. 24 cm. Date : 2010 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Understanding nanomaterials par Johal, Malkiat S. Publication : Boca Raton CRC Press 2011 . xix, 307 p. , With a selective presentation of topics that makes it accessible for students who have taken introductory university science courses, Understanding Nanomaterials is a training tool for the future workforce in nanotech development. This introductory textbook offers insights into the fundamental principles that govern the fabrication, characterization, and application of nanomaterials. Provides the Background for Fundamental Understanding Assuming only a basic level of competency in physics, chemistry, and biology, the author focuses on the needs of the undergraduate curriculum, discussing important processes such as self-assembly, patterning, and nanolithography. His approach limits mathematical rigor in the presentation of key results and proofs, leaving it to the instructor’s discretion to add more advanced details, or emphasize particular areas of interest. With its combination of discussion-based instruction and explanation of problem-solving skills, this textbook highlights interdisciplinary theory and enabling tools derived from chemistry, biology, physics, medicine, and engineering. It also includes real-world examples related to energy, the environment, and medicine. Author Malkiat S. Johal earned his Ph.D. from the University of Cambridge in England. He later served as a post-doctoral research associate at Los Alamos National Laboratory, New Mexico, where he worked on the nonlinear optical properties of nanoassemblies. Dr. Johal is currently a professor and researcher at Pomona College in Claremont, California. His work focuses on the use of self-assembly and ionic adsorption processes to fabricate nanomaterials for optical and biochemical applications. 24 cm. Date : 2011 Disponibilité : Exemplaires disponibles: La bibliothèque des sciences de l'ingénieur (1),

Vous ne trouvez pas ce que vous cherchez ?
© Tous droits résérvés IMIST/CNRST
Angle Av. Allal Al Fassi et Av. des FAR, Hay Ryad, BP 8027, 10102 Rabat, Maroc
Tél:(+212) 05 37.56.98.00
CNRST / IMIST

Propulsé par Koha